Inductive programmingInductive programming (IP) is a special area of automatic programming, covering research from artificial intelligence and programming, which addresses learning of typically declarative (logic or functional) and often recursive programs from incomplete specifications, such as input/output examples or constraints. Depending on the programming language used, there are several kinds of inductive programming.
Real numberIn mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
Side effect (computer science)In computer science, an operation, function or expression is said to have a side effect if it modifies some state variable value(s) outside its local environment, which is to say if it has any observable effect other than its primary effect of returning a value to the invoker of the operation. Example side effects include modifying a non-local variable, modifying a static local variable, modifying a mutable argument passed by reference, performing I/O or calling other functions with side-effects.
Dynamic programming languageIn computer science, a dynamic programming language is a class of high-level programming languages, which at runtime execute many common programming behaviours that static programming languages perform during compilation. These behaviors could include an extension of the program, by adding new code, by extending objects and definitions, or by modifying the type system. Although similar behaviors can be emulated in nearly any language, with varying degrees of difficulty, complexity and performance costs, dynamic languages provide direct tools to make use of them.
Conditional (computer programming)In computer science, conditionals (that is, conditional statements, conditional expressions and conditional constructs) are programming language commands for handling decisions. Specifically, conditionals perform different computations or actions depending on whether a programmer-defined Boolean condition evaluates to true or false. In terms of control flow, the decision is always achieved by selectively altering the control flow based on some condition (apart from the case of branch predication).
Integrated development environmentAn integrated development environment (IDE) is a software application that provides comprehensive facilities for software development. An IDE normally consists of at least a source-code editor, build automation tools, and a debugger. Some IDEs, such as NetBeans and Eclipse, contain the necessary compiler, interpreter, or both; others, such as SharpDevelop and Lazarus, do not. The boundary between an IDE and other parts of the broader software development environment is not well-defined; sometimes a version control system or various tools to simplify the construction of a graphical user interface (GUI) are integrated.
Computer algebraIn mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes exact computation with expressions containing variables that have no given value and are manipulated as symbols.
General recursive functionIn mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis).
Pure functionIn computer programming, a pure function is a function that has the following properties: the function return values are identical for identical arguments (no variation with local static variables, non-local variables, mutable reference arguments or input streams), and the function has no side effects (no mutation of local static variables, non-local variables, mutable reference arguments or input/output streams). Some authors, particularly from the imperative language community, use the term "pure" for all functions that just have the above property 2 (discussed below).
Liouville numberIn number theory, a Liouville number is a real number with the property that, for every positive integer , there exists a pair of integers with such that Liouville numbers are "almost rational", and can thus be approximated "quite closely" by sequences of rational numbers. Precisely, these are transcendental numbers that can be more closely approximated by rational numbers than any algebraic irrational number can be. In 1844, Joseph Liouville showed that all Liouville numbers are transcendental, thus establishing the existence of transcendental numbers for the first time.