Formal verificationIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Comparison of programming languages (syntax)This comparison of programming languages compares the features of language syntax (format) for over 50 computer programming languages. Programming language expressions can be broadly classified into four syntax structures: prefix notation Lisp (* (+ 2 3) (expt 4 5)) infix notation Fortran (2 + 3) * (4 ** 5) suffix, postfix, or Reverse Polish notation Forth 2 3 + 4 5 ** * math-like notation TUTOR (2 + 3)(45) $$ note implicit multiply operator When a programming languages has statements, they typically have conventions for: statement separators; statement terminators; and line continuation A statement separator demarcates the boundary between two separate statements.
Tail callIn computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and is often easy to optimize in implementations. Tail calls can be implemented without adding a new stack frame to the call stack.
Dyadic rationalIn mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.
Induction of regular languagesIn computational learning theory, induction of regular languages refers to the task of learning a formal description (e.g. grammar) of a regular language from a given set of example strings. Although E. Mark Gold has shown that not every regular language can be learned this way (see language identification in the limit), approaches have been investigated for a variety of subclasses. They are sketched in this article. For learning of more general grammars, see Grammar induction.
Regular grammarIn theoretical computer science and formal language theory, a regular grammar is a grammar that is right-regular or left-regular. While their exact definition varies from textbook to textbook, they all require that all production rules have at most one non-terminal symbol; that symbol is either always at the end or always at the start of the rule's right-hand side. Every regular grammar describes a regular language.
Partial applicationIn computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function , we might fix (or 'bind') the first argument, producing a function of type . Evaluation of this function might be represented as . Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
RecursionRecursion occurs when the definition of a concept or process depends on a simpler version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur.
Late bindingIn computing, late binding or dynamic linkage—though not an identical process to dynamically linking imported code libraries—is a computer programming mechanism in which the method being called upon an object, or the function being called with arguments, is looked up by name at runtime. In other words, a name is associated with a particular operation or object at runtime, rather than during compilation. The name dynamic binding is sometimes used, but is more commonly used to refer to dynamic scope.
Regular languageIn theoretical computer science and formal language theory, a regular language (also called a rational language) is a formal language that can be defined by a regular expression, in the strict sense in theoretical computer science (as opposed to many modern regular expression engines, which are augmented with features that allow the recognition of non-regular languages). Alternatively, a regular language can be defined as a language recognized by a finite automaton.