Towards a Composite Benchmark Method for the Aqueous Solvation Free Energies of Organic Compounds
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
We revisit the statistical mechanics of charge fluctuations in capacitors. In constant-potential classical molecular simulations, the atomic charges of electrode atoms are treated as additional degrees of freedom which evolve in time so as to satisfy the c ...
Atomistic simulations are a bottom up approach that predict properties
of materials by modelling the quantum mechanical behaviour of all electrons
and nuclei present in a system. These simulations, however, routinely assume
nuclei to be classical particles ...
The free energy plays a fundamental role in theories of phase transformations and microstructure evolution. It encodes the thermodynamic coupling between different fields, such as mechanics and chemistry, within continuum descriptions of non-equilibrium ma ...
A method based on molecular dynamics simulations which employ two distinct levels of theory is proposed and tested for the prediction of Gibbs free energies of solvation for non-ionic solutes in water. The method consists of two additive contributions: (i) ...
We present a generally applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in an explicit solvent using H2O2 and CH3SO3H in phenol as an example. To address the challenges ...
The present work proposes an extension to the approach of [Xi, C; et al. J. Chem. Theory Comput. 2022, 18, 6878] to calculate ion solvation free energies from first-principles (FP) molecular dynamics (MD) simulations of a hybrid solvation model. The approa ...
The modeling of non-covalent interactions, solvation effects, and chemical reactions in complex molecular environment is a challenging task. Current state-of-the-art approaches often rely on static computations using implicit solvent models and harmonic ap ...
Molecular-level understanding and characterization of solvation environments are often needed across chemistry, biology, and engineering. Toward practical modeling of local solvation effects of any solute in any solvent, we report a static and all-quantum ...
Continuum models to handle solvent and electrolyte effects in an effective way have a long tradition in quantum-chemistry simulations and are nowadays also being introduced in computational condensed-matter and materials simulations. A key ingredient of co ...