History of string theoryThe history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers, string theory has developed into a broad and varied subject with connections to quantum gravity, particle and condensed matter physics, cosmology, and pure mathematics. String theory represents an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 following John Archibald Wheeler's 1937 introduction of the S-matrix.
Longitudinal waveLongitudinal waves are waves in which the vibration of the medium is parallel to the direction the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.
String theoryIn physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string.
Boundary value problemIn the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems.
Split-ticket votingSplit-ticket voting is when a voter in an election votes for candidates from different political parties when multiple offices are being decided by a single election, as opposed to straight-ticket voting, where a voter chooses candidates from the same political party for every office up for election. Split-ticket voting can occur in certain mixed-member systems which allow for it, such as mixed-member proportional and parallel voting systems.
Mixed-member proportional representationMixed-member proportional representation (MMP or MMPR) is a mixed electoral system in which votes are cast for both local elections and also for overall party vote tallies, which are used to allocate additional members to produce or deepen overall proportional representation. In some MMP systems, voters get two votes: one to decide the representative for their single-seat constituency, and one for a political party. In Denmark and others, the single vote cast by the voter is used for both the local election (in a multi-member or single-seat district), and for the overall top-up.
Semi-proportional representationSemi-proportional representation characterizes multi-winner electoral systems which allow representation of minorities, but are not intended to reflect the strength of the competing political forces in close proportion to the votes they receive. Semi-proportional voting systems can be regarded as compromises between forms of proportional representation such as party-list PR, and plurality/majoritarian systems such as first-past-the-post voting. Examples of semi-proportional systems include the single non-transferable vote, limited voting, and parallel voting.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Nordström's theory of gravitationIn theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.
Irreducible representationIn mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of . Every finite-dimensional unitary representation on a Hilbert space is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.