Summary
In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of . Every finite-dimensional unitary representation on a Hilbert space is the direct sum of irreducible representations. Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible. Group representation theory was generalized by Richard Brauer from the 1940s to give modular representation theory, in which the matrix operators act on a vector space over a field of arbitrary characteristic, rather than a vector space over the field of real numbers or over the field of complex numbers. The structure analogous to an irreducible representation in the resulting theory is a simple module. Let be a representation i.e. a homomorphism of a group where is a vector space over a field . If we pick a basis for , can be thought of as a function (a homomorphism) from a group into a set of invertible matrices and in this context is called a matrix representation. However, it simplifies things greatly if we think of the space without a basis. A linear subspace is called -invariant if for all and all . The co-restriction of to the general linear group of a -invariant subspace is known as a subrepresentation. A representation is said to be irreducible if it has only trivial subrepresentations (all representations can form a subrepresentation with the trivial -invariant subspaces, e.g. the whole vector space , and {0}). If there is a proper nontrivial invariant subspace, is said to be reducible. Group elements can be represented by matrices, although the term "represented" has a specific and precise meaning in this context.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (33)
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-492: Representation theory of semisimple lie algebras
We will establish the major results in the representation theory of semisimple Lie algebras over the field of complex numbers, and that of the related algebraic groups.
Show more
Related MOOCs (20)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more