Orientation (graph theory)In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. A directed graph is called an oriented graph if none of its pairs of vertices is linked by two symmetric edges. Among directed graphs, the oriented graphs are the ones that have no 2-cycles (that is at most one of (x, y) and (y, x) may be arrows of the graph). A tournament is an orientation of a complete graph. A polytree is an orientation of an undirected tree.
Circuit complexityIn theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes.
Tensor product of graphsIn graph theory, the tensor product G × H of graphs G and H is a graph such that the vertex set of G × H is the Cartesian product V(G) × V(H); and vertices (g,h) and math|(''g,h' ) are adjacent in G × H if and only if g is adjacent to g' in G, and h is adjacent to h' in H. The tensor product is also called the direct product, Kronecker product, categorical product, cardinal product, relational product, weak direct product, or conjunction'''.
Cycle spaceIn graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary rings.
Complexity of constraint satisfactionThe complexity of constraint satisfaction is the application of computational complexity theory on constraint satisfaction. It has mainly been studied for discriminating between tractable and intractable classes of constraint satisfaction problems on finite domains. Solving a constraint satisfaction problem on a finite domain is an NP-complete problem in general. Research has shown a number of polynomial-time subcases, mostly obtained by restricting either the allowed domains or constraints or the way constraints can be placed over the variables.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Boolean-valued functionA Boolean-valued function (sometimes called a predicate or a proposition) is a function of the type f : X → B, where X is an arbitrary set and where B is a Boolean domain, i.e. a generic two-element set, (for example B = {0, 1}), whose elements are interpreted as logical values, for example, 0 = false and 1 = true, i.e., a single bit of information. In the formal sciences, mathematics, mathematical logic, statistics, and their applied disciplines, a Boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition.