Summary
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925). Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra. The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of . A homomorphism may also be an isomorphism, an endomorphism, an automorphism, etc. (see below). Each of those can be defined in a way that may be generalized to any class of morphisms. A homomorphism is a map between two algebraic structures of the same type (that is of the same name), that preserves the operations of the structures. This means a map between two sets , equipped with the same structure such that, if is an operation of the structure (supposed here, for simplification, to be a binary operation), then for every pair , of elements of . One says often that preserves the operation or is compatible with the operation. Formally, a map preserves an operation of arity , defined on both and if for all elements in . The operations that must be preserved by a homomorphism include 0-ary operations, that is the constants. In particular, when an identity element is required by the type of structure, the identity element of the first structure must be mapped to the corresponding identity element of the second structure. For example: A semigroup homomorphism is a map between semigroups that preserves the semigroup operation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.