**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Accurate, Stable and Efficient Modal Calculations of Photoelectrically Useful Absorption in Lamellar Metallic and Semiconductor Diffraction Gratings

Abstract

Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to improve the light absorption, the cost per Watt could sink. Correspondingly, the optics of such structures need to compensate for the low absorption by high (structural) resonance, which is challenging to calculate. To estimate optimal structures, a numerical method should be able to assess feasible structures with widely varying geometries quickly. Modal methods allow for an efficient analysis of structures with varying height through the separation of eigenvalue and boundary value problem. First, the thesis aspires to further develop the modal methods for the calculation of optical properties of layered structures containing weakly absorbing metals and semiconductors. Second, the thesis aims to calculate absorption enhancements in idealized, prototypical structures by applying the newly developed methods. The calculations should only depend on material parameters and not contain additional assumptions. These absorption enhancements are not tied to a priori assumptions such as mode couplings, but they solely follow the physics of the structure investigated. The first part of the thesis is concerned with the methodical improvements. A first emphasis is put on studying peculiar properties of the eigenvalue problem, and on new developments of methods to solve it within a layer. Furthermore, it shows several variants for the numerical implementation of the eigenvalue problem. This part includes a new method to calculate the eigenvalues that can be adapted to two dimensional grating problems of arbitrary shape. The new method integrates the eigenvalue problem by making use of a two point trapezoidal formula, and satisfies the boundary condition between different materials exactly. It is energy conserving and the rate of convergence depends on the approximation order. The eigenvalues show a monotonic convergence that allows for extrapolation. The second methodical emphasis is placed on variants of the implementation of the boundary value problem that connects the grating to the incoming and outgoing plane waves. This algorithm describes the propagation of the incident energy to the semiconductor layer and the substrate by solving a non-recursive and numerically stable system of linear equations. A novel variant reduces the bandwidth of the corresponding matrix by a third. The third part of the thesis concerns calculations using the improved methods. First, the improved calculations are verified by showing that the energy conservation of the modal method, as well as the well-behavedness of the condition number of the calculation. Next, numerical results for the new methods are compared to results from the literature for analytic modal methods, and a comparison with existing software is made. Thereafter, the interface plasmons occuring for H polarization are investigated. In the last part of the thesis, calculations are made for the material specific absorption of light in metallic gratings covered by semiconductors, with a special interest in the absorption in the semiconductor. Here, the spectra for rectangular, sinusoidal gratings, and asymmetric gratings are calculated, and the absorption improvement is investigated through an analysis of the involved modes.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related publications

No results

Related concepts (12)

Related MOOCs (7)

Diffraction grating

In optics, a diffraction grating is an optical grating with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structural coloration. The directions or diffraction angles of these beams depend on the wave (light) incident angle to the diffraction grating, the spacing or distance between adjacent diffracting elements (e.g., parallel slits for a transmission grating) on the grating, and the wavelength of the incident light.

Eigenvalues and eigenvectors

In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.

Atomic absorption spectroscopy

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions. In analytical chemistry the technique is used for determining the concentration of a particular element (the analyte) in a sample to be analyzed.

Synchrotrons and X-Ray Free Electron Lasers (part 1)

Synchrotrons and X-Ray Free Electron Lasers (part 1)

Synchrotrons and X-Ray Free Electron Lasers (part 2)

The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.

Micro and Nanofabrication (MEMS)

Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.