Computational challenges in magnetic-confinement fusion physics
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present the results on two-photon total-internal-reflection fluorescence correlation spectroscopy. The combination of liquid crystal spatial light modulator, providing radial polarization, with ultrafast laser (picosecond Nd:GdVO4 laser) allowed us to t ...
The need for an intense source of coherent, millimetre-wavelength radiation to heat a fusion plasma and control its instabilities represents a significant challenge in the development of the ITER experimental fusion reactor. This challenge may now have bee ...
The ultimate goal of magnetic confinement fusion research is to develop an electricity producing power plant based on thermonuclear fusion reactions. Among the most promising magnetic confinement devices, as leading concepts for future power plants, are to ...
This paper aims to contribute both to the ongoing process of scrape-off layer code-experiment and code-code benchmarking. Results are presented from SOLPS5 simulations of two high power JET H-modes with similar magnetic configuration, concentrating in the ...
In magnetic confinement devices, the inhomogeneity of the confining magnetic field along a magnetic field line generates the trapping of particles (with low ratio of parallel to perpendicular velocities) within local magnetic wells. One of the consequences ...
Analysis of magnetic fluctuations is important for understanding the magneto-hydrodynamic (MHD) properties of fusion plasmas. These properties affect nearly all aspects of behaviour of magnetic confinement, and thus are of interest in topics ranging from g ...
The Tokamak a Configuration Variable (TCV) tokamak is equipped with high-power (4.5 MW), real-time-controllable EC systems and flexible shaping, and plays an important role in fusion research by broadening the parameter range of reactor relevant regimes, b ...
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak à Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse ...
We describe a few relevant aspects of the new plasma physics stability code, TERPSICHORE, which breaks new ground both in plasma theory and in its algorithmic implementation. We chose a highly accurate discrete mathematical representation which led to the ...
Improvement in the performance of magnetic confinement devices for nuclear fusion relies on the optimization of the geometry of the plasma: either the two-dimensional (2D) cross-section shape in tokamaks with toroidal symmetry or the 3D magnetic configurat ...