Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Obstructive Sleep Apnea (OSA) is one of the main sleep disorders, but only 10% of the cases are diagnosed. Moreover, there is a lack of tools for long-term monitoring of OSA, since current systems are too bulky and intrusive to be used continuously. In this context, recent studies have shown that it is possible to detect it automatically based on single- lead ECG recordings. This approach can be used in non-invasive smart wearable sensors which measure and process bio-signals online. This work focuses on the implementation, optimization and integration of an algorithm for OSA detection for preventive health-care. It relies on a frequency-domain analysis while tar- geting an ultra-low power embedded wearable device. As it must share its resources usage with other computations, it must be as lightweight as possible. Our current results based on publicly available signals show a classification accuracy of up to 83.2% for both the offline analysis and the embedded online one. This system gives an even better classification accuracy than the best offline algorithm when using the same features for classification
,
Daniel Gatica-Perez, Philipp Buluschek, Bruno Pais
Kamiar Aminian, Anisoara Ionescu, Sara Pagnamenta