Obstructive Sleep Apnea (OSA) is one of the main sleep disorders, but only 10% of the cases are diagnosed. Moreover, there is a lack of tools for long-term monitoring of OSA, since current systems are too bulky and intrusive to be used continuously. In this context, recent studies have shown that it is possible to detect it automatically based on single- lead ECG recordings. This approach can be used in non-invasive smart wearable sensors which measure and process bio-signals online. This work focuses on the implementation, optimization and integration of an algorithm for OSA detection for preventive health-care. It relies on a frequency-domain analysis while tar- geting an ultra-low power embedded wearable device. As it must share its resources usage with other computations, it must be as lightweight as possible. Our current results based on publicly available signals show a classification accuracy of up to 83.2% for both the offline analysis and the embedded online one. This system gives an even better classification accuracy than the best offline algorithm when using the same features for classification
Marcos Rubinstein, Farhad Rachidi-Haeri, Elias Per Joachim Le Boudec, Chaouki Kasmi, Nicolas Mora Parra, Emanuela Radici
Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Luke Simons, Claudia Colandrea, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp