Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The characterization of images by geometric features facilitates the precise analysis of the structures found in biological micrographs such as cells, proteins, or tissues. In this thesis, we study image representations that are adapted to local geometric transformations such as rotation, translation, and scaling, with a special emphasis on wavelet representations. In the first part of the thesis, our main interest is in the analysis of directional patterns and the estimation of their location and orientation. We explore steerable representations that correspond to the notion of rotation. Contrarily to classical pattern matching techniques, they have no need for an a priori discretization of the angle and for matching the filter to the image at each discretized direction. Instead, it is sufficient to apply the filtering only once. Then, the rotated filter for any arbitrary angle can be determined by a systematic and linear transformation of the initial filter. We derive the Cramér-Rao bounds for steerable filters. They allow us to select the best harmonics for the design of steerable detectors and to identify their optimal radial profile. We propose several ways to construct optimal representations and to build powerful and effective detector schemes; in particular, junctions of coinciding branches with local orientations. The basic idea of local transformability and the general principles that we utilize to design steerable wavelets can be applied to other geometric transformations. Accordingly, in the second part, we extend our framework to other transformation groups, with a particular interest in scaling. To construct representations in tune with a notion of local scale, we identify the possible solutions for scalable functions and give specific criteria for their applicability to wavelet schemes. Finally, we propose discrete wavelet frames that approximate a continuous wavelet transform. Based on these results, we present a novel wavelet-based image-analysis software that provides a fast and automatic detection of circular patterns, combined with a precise estimation of their size.
, ,