Tracking Time-Vertex Propagation using Dynamic Graph Wavelets
Related publications (124)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
This article focuses on spectral methods for recovering communities in temporal networks. In the case of fixed communities, spectral clustering on the simple time-aggregated graph (i.e., the weighted graph formed by the sum of the interactions over all tem ...
Technology mapping transforms a technology-independent representation into a technology-dependent one given a library of cells. This process is performed by means of local replacements that are extracted by matching sections of the subject graph to library ...
We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
The adaptive social learning paradigm helps model how networked agents are able to form opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents repeatedly update their beliefs based on private observation ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023
Machine learning has paved the way for the real-time monitoring of complex infrastructure and industrial systems. However, purely data-driven methods have not been able to learn the underlying dynamics and generalize them to operating conditions that have ...
Federated learning is a semi-distributed algorithm, where a server communicates with multiple dispersed clients to learn a global model. The federated architecture is not robust and is sensitive to communication and computational overloads due to its one-m ...