**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Privatized graph federated learning

Abstract

Federated learning is a semi-distributed algorithm, where a server communicates with multiple dispersed clients to learn a global model. The federated architecture is not robust and is sensitive to communication and computational overloads due to its one-master multi-client structure. It can also be subject to privacy attacks targeting personal information on the communication links. In this work, we introduce graph federated learning, which consists of multiple federated units connected by a graph. We then show how graph-homomorphic perturbations can be used to ensure the algorithm is differentially private on the server level. While on the client level, we show that improvement in the differentially private federated learning algorithm can be attained through the addition of random noise to the updates, as opposed to the models. We conduct both convergence and privacy theoretical analyses and illustrate performance by means of computer simulations.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (24)

Related publications (39)

Related concepts (34)

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

Ontological neighbourhood

Line graph

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G). The name line graph comes from a paper by although both and used the construction before this.

Planar graph

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Graph theory

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points) which are connected by edges (also called links or lines). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...

In the domains of machine learning, data science and signal processing, graph or network data, is becoming increasingly popular. It represents a large portion of the data in computer, transportation systems, energy networks, social, biological, and other s ...

Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis

This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...

2023