Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
A new hole-transport material (HTM) based on the 1,3,4-oxadiazole moiety (H1) was prepared through a single-step synthetic pathway starting from commercially available products. Thanks to a deep HOMO level, H1 was used as HTM in CH3NH3PbBr3 perovskite solar cells yielding an efficiency of 5.8%. The reference HTM (Spiro-OMeTAD), under the same testing conditions, furnished a lower efficiency of 5.1%. Steady-state and time-resolved photoluminescence of the thin films showed good charge-extraction dynamics for H1 devices. In addition, H1 shows a large thermal stability and completely amorphous behavior (as evaluated by thermal gravimetric analysis and differential scanning calorimetry).
Baptiste Thomas Jean Rouxel, Lu Jiang