Resonant elastic x-ray scattering from the skyrmion lattice in Cu2OSeO3
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The interplay of topological characteristics in real space and reciprocal space can lead to the emergence of unconventional topological phases. In this Letter, we implement a novel mechanism for generating higher-Chern flat bands on the basis of twisted bi ...
Metal nanoclusters are a unique class of synthetic material, as their crystal structures can be resolved using X-ray diffraction, and their chemical formula can be precisely determinated from mass spectroscopy. However, a complete structure characterizatio ...
Spin dynamics in skyrmion hosting materials provide novel functionality in magnonics because of the formation of a novel magnon band structure and the nanoscale sizes of magnetic skyrmions. In this thesis, we explore the spin dynamics in the chiral magnet ...
In the quest for controlling materials' properties, light as an external stimulus has a special place as it can create new states of matter and enable their ultrafast manipulation. In particular, spintronics, an exciting emergent field relying on the elect ...
Magnetic skyrmions are nanometric and non-trivial spin textures with non-zero topological charge. Their robustness against perturbations and the possibility to control them using external stimuli make them ideal candidates for future spintronic application ...
Magnetic skyrmions are topologically stable swirling spin textures with particle-like character, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric sys ...
In magnetism, skyrmions correspond to classical three-dimensional spin textures characterized by a topological invariant that keeps track of the winding of the magnetization in real space, a property that cannot be easily generalized to the quantum case si ...
Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray ...
Recently, a hexagonal phase has been reported in high carbon steels in several studies. Here, we show that the electron microscopy results used in these studies were erroneously interpreted. The extra-spots in the diffraction patterns and the odd contrasts ...
Magnetic skyrmions are vortexlike topological spin textures often observed in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Among them, Co-Zn-Mn alloys with a beta-Mn-type chiral structure host skyrmions above room temperature. In thi ...