Publication

A subcutaneous cellular implant for passive immunization against amyloid-beta reduces brain amyloid and tau pathologies

Abstract

Passive immunization against toxic misfolded proteins could offer protection against neurodegenerative disease. LathuiliSre et al. report the development of a retrievable device to encapsulate cells secreting recombinant anti-amyloid-beta antibodies. When implanted in mouse models of Alzheimer's disease, the system delivers antibodies to the brain and reduces amyloid and tau pathologies.Passive immunization against toxic misfolded proteins could offer protection against neurodegenerative disease. LathuiliSre et al. report the development of a retrievable device to encapsulate cells secreting recombinant anti-amyloid-beta antibodies. When implanted in mouse models of Alzheimer's disease, the system delivers antibodies to the brain and reduces amyloid and tau pathologies.Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-beta peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-beta antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-beta antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 A mu g/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-beta antibodies dramatically reduces amyloid-beta(40) and amyloid-beta(42) levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Amyloid beta
Amyloid beta (Aβ or Abeta) denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms.
Amyloid
Amyloids are aggregates of proteins characterised by a fibrillar morphology of typically 7–13 nm in diameter, a β-sheet secondary structure (known as cross-β) and ability to be stained by particular dyes, such as Congo red. In the human body, amyloids have been linked to the development of various diseases. Pathogenic amyloids form when previously healthy proteins lose their normal structure and physiological functions (misfolding) and form fibrous deposits within and around cells.
Amyloid plaques
Amyloid plaques (also known as neuritic plaques, amyloid beta plaques or senile plaques) are extracellular deposits of the amyloid beta (Aβ) protein mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of microglia and astrocytes can be associated with amyloid plaques. Some plaques occur in the brain as a result of aging, but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease. Abnormal neurites in amyloid plaques are tortuous, often swollen axons and dendrites.
Show more
Related publications (79)

Method of preparation of amyloidogenic protein aggregates and uses thereof

Hilal Lashuel, Galina Limorenko

The invention relates to methods for the preparation of method of preparation of Tau aggregates, including fibrils, fibrillar species, soluble and insoluble oligomeric species, new Tau aggregates and uses thereof. The invention further relates to the uses ...
2024

Deconstructing and Reconstructing the Complexity of Tau pathology

Galina Limorenko

This thesis consists of four Chapters unified by a singular theme – how do we develop disease models that faithfully reproduce the pathology seen in patients suffering from neurodegenerative disorders associated with the Tau protein, such as Alzheimer’ ...
EPFL2023

Trans‐seeding of Alzheimer‐related tau protein by a yeast prion

Henning Paul-Julius Stahlberg, Zhiva Skachokova

Abnormal tau protein aggregates constitute a hallmark of Alzheimer's disease. The mechanisms underlying the initiation of tau aggregation in sporadic neurodegeneration remain unclear. Here we investigate whether a non-human prion can seed tau aggregation. ...
2022
Show more