Summary
Amyloid beta (Aβ or Abeta) denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms. It is now believed that certain misfolded oligomers (known as "seeds") can induce other Aβ molecules to also take the misfolded oligomeric form, leading to a chain reaction akin to a prion infection. The oligomers are toxic to nerve cells. The other protein implicated in Alzheimer's disease, tau protein, also forms such prion-like misfolded oligomers, and there is some evidence that misfolded Aβ can induce tau to misfold. A study has suggested that APP and its amyloid potential is of ancient origins, dating as far back as early deuterostomes. Amyloid precursor protein#Biological function The normal function of Aβ is not well understood. Though some animal studies have shown that the absence of Aβ does not lead to any obvious loss of physiological function, several potential activities have been discovered for Aβ, including activation of kinase enzymes, protection against oxidative stress, regulation of cholesterol transport, functioning as a transcription factor, and anti-microbial activity (potentially associated with Aβ's pro-inflammatory activity). The glymphatic system clears metabolic waste from the mammalian brain, and in particular amyloid beta. A number of proteases have been implicated by both genetic and biochemical studies as being responsible for the recognition and degradation of amyloid beta; these include insulin degrading enzyme and presequence protease. The rate of removal is significantly increased during sleep. However, the significance of the glymphatic system in Aβ clearance in Alzheimer's disease is unknown.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (33)

Anti-Aβ antibodies bound to neuritic plaques enhance microglia activity and mitigate tau pathology

Bernard Schneider, Philippe Colin, Vanessa Laversenne

The brain pathology of Alzheimer’s disease (AD) is characterized by the misfolding and aggregation of both the amyloid beta (Aβ) peptide and hyperphosphorylated forms of the tau protein. Initial Aβ de
2020

Half a century of amyloids: past, present and future

Hilal Lashuel, Raffaele Mezzenga

Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological mani
2020

Application of anti-amyloid beta immunization using encapsulated cell technology in mouse models of Alzheimer's disease

Vanessa Laversenne

Alzheimer's€™ disease (AD) is the most common form of dementia in the elderly. AD is characterized by the deposition of two aggregated proteins: Amyloid beta (Aß) and hyperphosphorylated tau. Accumula
EPFL2019
Show more
Related concepts (23)
Alzheimer's disease
Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens, and is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with language, disorientation (including easily getting lost), mood swings, loss of motivation, self-neglect, and behavioral issues. As a person's condition declines, they often withdraw from family and society.
Amyloid beta
Amyloid beta (Aβ or Abeta) denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms.
Amyloid
Amyloids are aggregates of proteins characterised by a fibrillar morphology of typically 7–13 nm in diameter, a β-sheet secondary structure (known as cross-β) and ability to be stained by particular dyes, such as Congo red. In the human body, amyloids have been linked to the development of various diseases. Pathogenic amyloids form when previously healthy proteins lose their normal structure and physiological functions (misfolding) and form fibrous deposits within and around cells.
Show more
Related courses (2)
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
Related lectures (49)
Self-attraction of DNA: Mediated Interactions
Discusses the self-attraction of DNA and its mediated interactions.
Parkinson's Disease Alpha-Synuclein: Amyloid Formation and Cross-reactivity
Explores Parkinson's alpha-synuclein cross-reactivity, amyloid formation, compound impact, and copper chaperones.
Amyloid-beta Pathology in C. elegans: Neuronal Seeds of Pathogenicity
Introduces a novel C. elegans model for studying Amyloid-beta pathology in Alzheimer's Disease, focusing on specific neuronal seeds of pathogenicity.
Show more
Related MOOCs

No results