Publication

Micromechanical design of hierarchical composites using global load sharing theory

Abstract

Hierarchical composites, embodied by natural materials ranging from bone to bamboo, may offer combinations of material properties inaccessible to conventional composites. Using global load sharing (GLS) theory, a well-established micromechanics model for composites, we develop accurate numerical and analytical predictions for the strength and toughness of hierarchical composites with arbitrary fiber geometries, fiber strengths, interface properties, and number of hierarchical levels, N. The model demonstrates that two key material properties at each hierarchical level a characteristic strength and a characteristic fiber length control the scalings of composite properties. One crucial finding is that short- and long-fiber composites behave radically differently. Long-fiber composites are significantly stronger than short-fiber composites, by a factor of 2(N) or more; they are also significantly tougher because their fiber breaks are bridged by smaller-scale fibers that dissipate additional energy. Indeed, an "infinite" fiber length appears to be optimal in hierarchical composites. However, at the highest level of the composite, long fibers localize on planes of pre-existing damage, and thus short fibers must be employed instead to achieve notch sensitivity and damage tolerance. We conclude by providing simple guidelines for micro structural design of hierarchical composites, including the selection of N, the fiber lengths, the ratio of length scales at successive hierarchical levels, the fiber volume fractions, and the desired properties of the smallest-scale reinforcement. Our model enables superior hierarchical composites to be designed in a rational way, without resorting either to numerical simulation or trial-and-error-based experimentation. (C) 2016 Elsevier Ltd. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.