Publication

NanoSIMS applied to the study of foraminifera

Abstract

NanoSIMS (Nanoscale Secondary-Ion Mass Spectrometry) is a powerful analytical technique that allows quantitative, subcellular imaging of incorporation and transfer of isotopically labeled compounds and metabolites in biological tissue (Hoppe et al., 2013). This technique is well adapted to study small organisms such as foraminifera. Recent studies have successfully applied NanoSIMS analysis of foraminifera to study the localization of labeled compounds incorporated into their calcium carbonate test and into the cell itself. In the test, it was applied to better understand the microdistribution of different elements (e.g. Mg/Ca ratio) used as proxies for paleoclimate reconstruction (e.g. Kunioka et al., 2006; Nehrke et al., 2013; Tachikawa et al., 2013). One study correlated NanoSIMS with TEM imaging to study the incorporation of isotopically labeled nitrate and sulfate in benthic foraminifera cell (Nomaki et al., 2016). In a series of individual experiments, we have used NanoSIMS in combination with TEM to study metabolic processes in foraminifera: 1) Heterotrophic feeding was investigated in the benthic species A. tepida under oxic and anoxic conditions (Lekieffre et al., 2016). 2) The spatio-temporal dynamics of assimilation and translocation of 13C-bicarbonate and 15N-ammonium/nitrate was investigated in both benthic (kleptoplastidy) and planktonic (symbiotic) foraminifera with pulse-chase experiments. In a benthic species containing sequestered chloroplasts, these were demonstrated to play a significant role in the incorporation of both inorganic carbon and nitrogen into the cytoplasm (Jauffrais et al., 2016 TMS oral presentation). Symbiotic planktonic foraminifera showed rapid uptake of bicarbonate and ammonium through the symbionts, whereas uptake of nitrate was less efficient.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (43)
Dissolved inorganic carbon
Dissolved inorganic carbon (DIC) is the sum of the aqueous species of inorganic carbon in a solution. Carbon compounds can be distinguished as either organic or inorganic, and as dissolved or particulate, depending on their composition. Organic carbon forms the backbone of key component of organic compounds such as – proteins, lipids, carbohydrates, and nucleic acids. Inorganic carbon is found primarily in simple compounds such as carbon dioxide, carbonic acid, bicarbonate, and carbonate (CO2, H2CO3, HCO3-, CO32- respectively).
Isotopic labeling
Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope. The reactant is then allowed to undergo the reaction. The position of the isotopes in the products is measured to determine the sequence the isotopic atom followed in the reaction or the cell's metabolic pathway.
Foraminifera
Foraminifera (fəˌræməˈnɪfərə ; Latin for "hole bearers"; informally called "forams") are single-celled organisms, members of a phylum or class of amoeboid protists characterized by streaming granular ectoplasm for catching food and other uses; and commonly an external shell (called a "test") of diverse forms and materials. Tests of chitin (found in some simple genera, and Textularia in particular) are believed to be the most primitive type. Most foraminifera are marine, the majority of which live on or within the seafloor sediment (i.
Show more
Related publications (34)

Diagenetic isotope exchange in biocalcites for paleoclimate reconstruction

Deyanira Graciela Cisneros Lazaro

The oxygen isotope compositions of fossil biocalcites, such as foraminifera, bivalves, brachiopods, and belemnites have allowed for reconstructions of sea surface and deep ocean temperatures throughout the Phanerozoic and constitute the most important reco ...
EPFL2024

Rapid grain boundary diffusion in foraminifera tests biases paleotemperature records

Anders Meibom, Jaroslaw Hubert Stolarski, Arthur Adams, Deyanira Graciela Cisneros Lazaro, Lukas Baumgartner, Jinming Guo

The paleoseawater temperature record from the oxygen isotope compositions of fossil foraminifera tests may be biased by up to about 1 degrees C due to grain-boundary diffusion alone, according to isotope exchange experiments on foraminifera tests. The oxyg ...
SPRINGERNATURE2023

Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios

Natalia Jakus

Autotrophic nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms fix CO2 and oxidize Fe(II) coupled to denitrification, influencing carbon, iron, and nitrogen cycles in pH-neutral, anoxic environments. However, the distribution of electrons from Fe(II ...
AMER SOC MICROBIOLOGY2023
Show more
Related MOOCs (5)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.