Piezoelectric response of BiFeO3 ceramics at elevated temperatures
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain ...
Micro- and nanoelectromechanical systems (MEMS/NEMS) have long shown their potential to disrupt the established technologies. Over the past 15 years, MEMS have become fundamental components in filters, accelerometers, gyroscopes and gas sensors. MEMS are n ...
Many perovskite materials experience a temperature-driven phase transition at the Curie temperature from a non-centrosymmetric polar ferroelectric phase to a paraelectric phase, where polarization is lost. The paraelectric phase is usually centrosymmetric ...
The results of recent studies of domain walls and their interaction with defects in BaTiO3, Pb(Zr, Ti)O-3, and BiFeO3 are discussed. The studies reveal why donor- and acceptor-doped Pb(Zr, Ti)O-3 behave differently, what is the role of stationary charged d ...
BiFeO3 is a ferroelectric with a Curie temperature of 830 C-degrees, however, its piezoelectric performance at high temperature remains unclear. The current work reveals a disappearance/recovery of piezoelectricity in BiFeO3 at elevated temperature and upo ...
Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroe ...
Ferroelectric perovskite oxides are widely used in sensors, actuators and optical modulators and, at the same time, they show promise for implementation in future applications such as energy storage, memory and cooling devices. At the infancy of the discov ...
Nanocomposites based on polyvinylidene fluoride– trifluoroethylene copolymer and up to 4 vol % of hydrophobized clay nanoparticles are investigated. The structure, piezoelectric properties, and oxygen permeability of solvent cast films are analyzed before ...
The characteristic functionality of ferroelectric materials is due to the symmetry of their crystalline structure. As such, ferroelectrics lend themselves to design approaches that manipulate this structural symmetry by introducing extrinsic strain. Using ...
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O-3 [PZT] ceramics. The origin of the donor-dopant effects is not entirely clear. (Pb,Ba)ZrO ...