Point particleA point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up space. A point particle is an appropriate representation of any object whenever its size, shape, and structure are irrelevant in a given context. For example, from far enough away, any finite-size object will look and behave as a point-like object.
Physical cosmologyPhysical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.
Massless particleIn particle physics, a massless particle is an elementary particle whose invariant mass is zero. There are two known gauge boson massless particles: the photon (carrier of electromagnetism) and the gluon (carrier of the strong force). However, gluons are never observed as free particles, since they are confined within hadrons. In addition the Weyl semimetal or Weyl fermion discovered in 2015 is also massless. Neutrinos were originally thought to be massless.
Buddhist cosmologyBuddhist cosmology is the description of the shape and evolution of the Universe according to Buddhist scriptures and commentaries. It consists of a temporal and a spatial cosmology. The temporal cosmology describes the timespan of the creation and dissolvement of alternate universes in different aeons. The spatial cosmology consists of a vertical cosmology, the various planes of beings, into which beings are reborn due to their merits and development; and a horizontal cosmology, the distribution of these world-systems into an infinite sheet of existential dimensions included in the cycle of samsara.
Complemented latticeIn the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval [c, d], viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement.
Strange matterStrange matter (or strange quark matter) is quark matter containing strange quarks. In extreme environments, strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtometers (strangelets) to kilometers, as in the hypothetical strange stars. At high enough density, strange matter is expected to be color superconducting. Ordinary matter, also referred to as atomic matter, is composed of atoms, with nearly all matter concentrated in the atomic nuclei.
Grand unification energyThe grand unification energy , or the GUT scale, is the energy level above which, it is believed, the electromagnetic force, weak force, and strong force become equal in strength and unify to one force governed by a simple Lie group. The exact value of the grand unification energy (if grand unification is indeed realized in nature) depends on the precise physics present at shorter distance scales not yet explored by experiments. If one assumes the Desert and supersymmetry, it is at around 1025 eV or GeV (≈ 1.
Induced gravityInduced gravity (or emergent gravity) is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967. Sakharov observed that many condensed matter systems give rise to emergent phenomena that are analogous to general relativity. For example, crystal defects can look like curvature and torsion in an Einstein–Cartan spacetime.
Classical electromagnetismClassical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics, which is a quantum field theory.
Philosophy of physicsIn philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into three areas: interpretations of quantum mechanics: mainly concerning issues with how to formulate an adequate response to the measurement problem and understand what the theory says about reality.