Niemeier latticeIn mathematics, a Niemeier lattice is one of the 24 positive definite even unimodular lattices of rank 24, which were classified by . gave a simplified proof of the classification. In the 1970s, has a sentence mentioning that he found more than 10 such lattices in the 1940s, but gives no further details. One example of a Niemeier lattice is the Leech lattice found in 1967. Niemeier lattices are usually labelled by the Dynkin diagram of their root systems.
Unification of theories in physicsUnification of theories about observable fundamental phenomena of nature is one of the primary goals of physics. The two great unifications to date are Isaac Newton’s unification of gravity and astronomy, and James Clerk Maxwell’s unification of electromagnetism; the latter has been further unified with the concept of electroweak interaction. This process of "unifying" forces continues today, with the ultimate goal of finding a theory of everything.
Grand unification epochIn physical cosmology, assuming that nature is described by a Grand Unified Theory, the grand unification epoch was the period in the evolution of the early universe following the Planck epoch, starting at about 10−43 seconds after the Big Bang, in which the temperature of the universe was comparable to the characteristic temperatures of grand unified theories. If the grand unification energy is taken to be 1015 GeV, this corresponds to temperatures higher than 1027 K.
String dualityString duality is a class of symmetries in physics that link different string theories, theories which assume that the fundamental building blocks of the universe are strings instead of point particles. Before the so-called "duality revolution" there were believed to be five distinct versions of string theory, plus the (unstable) bosonic and gluonic theories.
Lattice field theoryIn physics, lattice field theory is the study of lattice models of quantum field theory, that is, of field theory on a space or spacetime that has been discretised onto a lattice. Although most lattice field theories are not exactly solvable, they are of tremendous appeal because they can be studied by simulation on a computer, often using Markov chain Monte Carlo methods. One hopes that, by performing simulations on larger and larger lattices, while making the lattice spacing smaller and smaller, one will be able to recover the behavior of the continuum theory as the continuum limit is approached.