Convex block-sparse linear regression with expanders - provably
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...
In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...
Decision-making permeates every aspect of human and societal development, from individuals' daily choices to the complex decisions made by communities and institutions. Central to effective decision-making is the discipline of optimization, which seeks the ...
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
Given a sequence of functions f1,…,fn with fi:D↦R, finite-sum minimization seeks a point x⋆∈D minimizing ∑j=1nfj(x)/n. In this work, we propose a key twist into the finite-sum minimizat ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
In inverse problems, the task is to reconstruct an unknown signal from its possibly noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian estimation are two powerful statistical paradigms for the resolution of such problems. They ...
Modern integrated circuits are tiny yet incredibly complex technological artifacts, composed of millions and billions of individual structures working in unison.Managing their complexity and facilitating their design drove part of the co-evolution of moder ...
The rapid development of wearable biomedical systems now enables real-time monitoring of electroencephalography (EEG) signals. Acquisition of these signals relies on electrodes. These systems must meet the design challenge of selecting an optimal set of el ...