Numerical homogenization and model order reduction for multiscale inverse problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A new multiscale method combined with model order reduction is proposed for flow problems in three-scale porous media. We derive an effective three-scale model that couples a macroscopic Darcy equation, a mesoscopic Stokes-Brinkman equation, and a microsco ...
In this paper, we consider unilateral contact problem without friction between a rigid body_and deformable one in the framework of isogeometric analysis. We present the theoretical_analysis of the mixed problem using an active-set strategy and for a primal ...
Multiscale or multiphysics partial differential equations are used to model a wide range of physical systems with various applications, e.g. from material and natural science to problems in biology or engineering. When the ratio between the smallest scale ...
Discontinuous Galerkin methods have desirable properties, which make them suitable for the com- putation of wave problems. Being parallelizable and hp-adaptive makes them attractive for the simulation of large-scale tsunami propagation. In order to retriev ...
We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L2 norm. We then deri ...
Solar energy has seen tremendous advances in the past years. For thin film photovoltaics, which use less of the expensive semiconductor materials, insufficient light absorption can be a limiting factor. It is hoped that by using diffractive optics to impro ...
In this paper we propose and analyze a new multiscale method for the wave equation. The proposed method does not require any assumptions on space regularity or scale-separation and it is formulated in the framework of the Localized Orthogonal Decomposition ...
We consider an adaptive isogeometric method (AIGM) based on (truncated) hierarchical B-splines and continue the study of its numerical properties. We prove that our AIGM is optimal in the sense that delivers optimal convergence rates as soon as the solutio ...
A new numerical method based on numerical homogenization and model order reduction is introduced for the solution of multiscale inverse problems. We consider a class of elliptic problems with highly oscillatory tensors that varies on a microscopic scale. W ...
A new multiscale method combined with model order reduction is proposed for flow problems in three-scale porous media. We derive an effective three-scale model that couples a macroscopic Darcy equation, a mesoscopic Stokes-Brinkman equation, and a microsco ...