Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We argue that there is virtually no practical situation in which one should seek a "theoretically wait-free" algorithm at the expense of a state-of-the-art blocking algorithm in the case of search data structures: blocking algorithms are simple, fast, and can be made "practically wait-free". We draw this conclusion based on the most exhaustive study of blocking search data structures to date. We consider (a) different search data structures of different sizes, (b) numerous uniform and non-uniform workloads, representative of a wide range of practical scenarios, with different percentages of update operations, (c) with and without delayed threads, (d) on different hardware technologies, including processors providing HTM instructions. We explain our claim that blocking search data structures are practically wait-free through an analogy with the birthday paradox, revealing that, in state-of-the-art algorithms implementing such data structures, the probability of conflicts is extremely small. When conflicts occur as a result of context switches and interrupts, we show that HTM-based locks enable blocking algorithms to cope with them
George Candea, Solal Vincenzo Pirelli
, , , ,