Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We propose a new proximal, path-following framework for a class of---possibly non-smooth---constrained convex problems. We consider settings where the non-smooth part is endowed with a proximity operator, and the constraint set is equipped with a self-concordant barrier. Our main contribution is a new re-parametrization of the optimality condition of the barrier problem, that allows us to process the objective function with its proximal operator within a new path following scheme. In particular, our approach relies on the following two main ideas. First, we re-parameterize the optimality condition as an auxiliary problem, such that a "good" initial point is available. Second, we combine the proximal operator of the objective and path-following ideas to design a single phase, proximal, path-following algorithm. Our method has several advantages. First, it allows handling non-smooth objectives via proximal operators, this avoids lifting the problem dimension via slack variables and additional constraints. Second, it consists of only a \emph{single phase} as compared to a two-phase algorithm in [43] In this work, we show how to overcome this difficulty in the proximal setting and prove that our scheme has the same O(ν√log(1/ε)) worst-case iteration-complexity with standard approaches [30, 33], but our method can handle nonsmooth objectives, where ν is the barrier parameter and ε is a desired accuracy. Finally, our framework allows errors in the calculation of proximal-Newton search directions, without sacrificing the worst-case iteration complexity. We demonstrate the merits of our algorithm via three numerical examples, where proximal operators play a key role to improve the performance over off-the-shelf interior-point solvers.
Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi