In computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource.
Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n. Average case is the function which performs an average number of steps on input data of n elements.
In real-time computing, the worst-case execution time is often of particular concern since it is important to know how much time might be needed in the worst case to guarantee that the algorithm will always finish on time.
Average performance and worst-case performance are the most used in algorithm analysis. Less widely found is best-case performance, but it does have uses: for example, where the best cases of individual tasks are known, they can be used to improve the accuracy of an overall worst-case analysis. Computer scientists use probabilistic analysis techniques, especially expected value, to determine expected running times.
The terms are used in other contexts; for example the worst- and best-case outcome of an epidemic, worst-case temperature to which an electronic circuit element is exposed, etc. Where components of specified tolerance are used, devices must be designed to work properly with the worst-case combination of tolerances and external conditions.
The term best-case performance is used in computer science to describe an algorithm's behavior under optimal conditions. For example, the best case for a simple linear search on a list occurs when the desired element is the first element of the list.
Development and choice of algorithms is rarely based on best-case performance: most academic and commercial enterprises are more interested in improving Average-case complexity and worst-case performance.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot.
In computational complexity theory, the average-case complexity of an algorithm is the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs. It is frequently contrasted with worst-case complexity which considers the maximal complexity of the algorithm over all possible inputs. There are three primary motivations for studying average-case complexity.
This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
Pergamon-Elsevier Science Ltd2024
,
Total Flow Analysis (TFA) is a method for the worst-case analysis of time-sensitive networks. It uses service curve characterizations of the network nodes and arrival curves of flows at their sources; for tractability, the latter are often taken to be line ...
This paper considers the problem of second-degree price discrimination when the type distribution is unknown or imperfectly specified by means of an ambiguity set. As robustness measure we use a performance index, equivalent to relative regret, which quant ...