Analog and RF Modeling of FDSOI UTBB MOSFET Using Leti-UTSOI Model
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Performance improvement by device scaling has been the prevailing method in the semiconductor industry over the past four decades. However, current silicon transistor technology is approaching a fundamental limit where scaling does not improve device perfo ...
Semiconductor nanowires are an emerging class of materials with great potential for applications in future electronic devices. The small footprint and the large charge-carrier mobilities of nanowires make them potentially useful for applications with high- ...
Over the recent decades, the balance between increasing the complexity of computer chips and simultaneously reducing cost per bit has been accommodated by down-scaling. While extremely successful in the past, this approach now faces grave limitations leadi ...
The increase of components density in advanced microelectronics is practically dictated by the device size and the achievable pitch between the devices. Scaling down dimensions of devices and progress in the circuit design allowed following Moore's law dur ...
The down-scaling of conventional MOSFETs has led to an impending power crisis, in which static power consumption is becoming too high. In order to improve the energy-efficiency of electronic circuits, small swing switches are interesting candidates to repl ...
Technology scaling improves the energy, performance, and area of the digital circuits. With further scaling into sub-45nm regime, we are moving toward very low supply (VDD) and threshold voltages (VT), smaller VDD/VT ratio, high leakage current, and large ...
Power dissipation is a fundamental problem for nanoelectronic circuits. Scaling the supply voltage reduces the energy needed for switching, but the field-effect transistors (FETs) in today's integrated circuits require at least 60 mV of gate voltage to inc ...
Silicon technology has advanced at exponential rates both in performances and productivity through the past four decades. However the limit of CMOS technology seems to be closer and closer and in the future we might see an increasing number of hybrid appro ...
A double-gate (DG) fin field effect transistor (FinFET) is discussed as new label-free ion and biological sensor. Simulations as function of channel doping, geometrical dimensions, operation point and materials investigated the device response to an extern ...
The High-Voltage MOSFET is used in a wide variety of applications covering from power systems up to RF-IC. Compact models that describe the high-frequency behavior of the device are required to predict high-frequency operation and switching capabilities of ...