Learning Complex Sequential Tasks from Demonstration: A Pizza Dough Rolling Case Study
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
Detecting people from 2D images and analyzing their motion in 3D have been long standing computer vision problems central to numerous applications such as autonomous driving and athletic training. Recently, with the availability of large amounts of trainin ...
Large training datasets have played a vital role in the success of modern deep learning methods in computer vision. But, obtaining sufficient amount of training data is challenging, specially when annotating volumetric images. This is because fully annotat ...
The presence of cortical lesions in multiple sclerosis patients has emerged as an important biomarker of the disease. They appear in the earliest stages of the illness and have been shown to correlate with the severity of clinical symptoms. However, cortic ...
Test time augmentation has been shown to be an effective approach to combat domain shifts in deep learning. Despite their promising performance levels, the interpretability of the underlying used models is however low. Saliency maps have been widely used i ...
Medical image segmentation is an important task forcomputer aided diagnosis. Pixelwise manual annotationsof large datasets require high expertise and is time consum-ing. Conventional data augmentations have limited benefitby not fully representing the unde ...
A novel method is proposed in the scope of image segmentation that solves this problem by breaking it into two main blocks. The first block's functionality is a method to anticipate the color basis of each segment in segmented images. One of the challenges ...
In recent years, Machine Learning based Computer Vision techniques made impressive progress. These algorithms proved particularly efficient for image classification or detection of isolated objects. From a probabilistic perspective, these methods can predi ...
Modern machine learning methods and their applications in computer vision are known to crave for large amounts of training data to reach their full potential. Because training data is mostly obtained through humans who manually label samples, it induces a ...