Particle diffusion in non-equilibrium bedload transport simulations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Field surveys and laboratory experiments show that bedload transport rates may vary to within one order of magnitude for a given water discharge. One of today's major challenges is to account for these large transport rate fluctuations in computational hyd ...
Riverbeds represent the habitat of numerous aquatic species. Exchanges between the groundwater, the hyporheic zone and the surface flow are also essential for river ecosystems. Fine sediment transported by rivers deposits inside or on top of the bed and mo ...
Bedload transport often exhibits dual-mode behavior due to interactions of spatiotemporal controlling factors with the migrating three-dimensional bedforms (characterized by the fully developed patterns in the bed, such as alternate bars, pools, and cluste ...
We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment based on a sediment concentration with a single momentum ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Measuring bedload transport rates usually involves measuring the flux of sediment or collecting sediment during a certain interval of time Δt. Because bedload transport rates exhibit significant non‐Gaussian fluctuations, their time‐averaged rates depend a ...
Local scouring is a leading cause of bridge collapses. To protect bridges against local scouring, different countermeasures have been proposed and tested in the literature. In this study, the performance of collars was evaluated for scour reduction at two ...
Bridge failure, due to local scour at bridge pier foundations, has become a critical issue in river and bridge engineering, which might lead to transportation disruption, loss of lives and economic problems. A practical solution to prevent bridge collapses ...
We present a numerical model for the simulation of 3D poly-dispersed sediment transport in a Newtonian flow with free surfaces. The physical model is based on a mixture model for multiphase flows. The Navier-Stokes equations are coupled with the transport ...
Bedload transport is one of the main mechanisms for sediment transport in rivers. Bedload transport may exhibit anomalous dispersion behavior during the formation of clusters on the surface of a heterogeneous river bed, which cannot be quantified by the cl ...