Two-dimensional Frohlich interaction in transition-metal dichalcogenide monolayers: Theoretical modeling and first-principles calculations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The vast amount of computational studies on electrical conduction in solid-state electrolytes is not mirrored by comparable efforts addressing thermal conduction, which has been scarcely investigated despite its relevance to thermal management and (over)he ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
Polymer-based nanocomposites emerged in the 1960s as a groundbreaking approach to advanced materials. By incorporating robust, durable, and multifunctional nanomaterials into a polymer matrix, the performance of nanocomposites has significantly surpassed t ...
Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
Nature is abundant in material platforms with anisotropic permittivities arising from symmetry reduction that feature a variety of extraordinary optical effects. Principal optical axes are essential characteristics for these effects that define light-matte ...
Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
We have performed electrochemical treatment of the van der Waals antiferromagnetic materials FePS3 and NiPS3 with the ionic liquid EMIM-BF4, achieving significant molecular intercalation. Mass analysis of the intercalated compounds, EMIMx-FePS3 and EMIMx-N ...
At room temperature, mechanical motion driven by the quantum backaction of light has been observed only in pioneering experiments in which an optical restoring force controls the oscillator stiffness1,2. For solid-state mechanical resonators in which oscil ...