Computational Aspects of Jacobians of Hyperelliptic Curves
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It is well-known that a finite group possesses a universal central extension if and only if it is a perfect group. Similarly, given a prime number p, we show that a finite group possesses a universal p′-central extension if and only if the p′-part of its a ...
For any positive integers n≥3,r≥1 we present formulae for the number of irreducible polynomials of degree n over the finite field F2r where the coefficients of xn−1, xn−2 and xn−3 are zero. Our proofs involve coun ...
We use Masser's counting theorem to prove a lower bound for the canonical height in powers of elliptic curves. We also prove the Galois case of the elliptic Lehmer problem, combining Kummer theory and Masser's result with bounds on the rank and torsion of ...
For~q a prime power, the discrete logarithm problem (DLP) in~\Fq consists in finding, for any g∈Fq× and h∈⟨g⟩, an integer~x such that gx=h. We present an algorithm for computing discrete logarithm ...
In the present thesis we study the geometry of the moduli spaces of Bradlow-Higgs triples on a smooth projective curve C. There is a family of stability conditions for triples that depends on a positive real parameter Ï. The moduli spaces of Ï-semistable ...
In this thesis we study a number of problems in Discrete Combinatorial Geometry in finite spaces. The contents in this thesis are structured as follows: In Chapter 1 we will state the main results and the notations which will be used throughout the thesis. ...
We study the structure of planar point sets that determine a small number of distinct distances. Specifically, we show that if a set of n points determines o(n) distinct distances, then no line contains Omega(n (7/8)) points of and no circle contains Omega ...
We prove that Hausel’s formula for the number of rational points of a Nakajima quiver variety over a finite field also holds in a suitable localization of the Grothendieck ring of varieties. In order to generalize the arithmetic harmonic analysis in his pr ...
Our motivation is the design of efficient algorithms to process closed curves represented by basis functions or wavelets. To that end, we introduce an inner-product calculus to evaluate correlations and L2 distances between such curves. In partic ...
We formulate a conjecture about the distribution of the canonical height of the lowest non-torsion rational point on a quadratic twist of a given elliptic curve, as the twist varies. This conjecture seems to be very deep and we can prove only partial resul ...