Publication

Scale-free channeling patterns near the onset of erosion of sheared granular beds

Matthieu Wyart
2016
Journal paper
Abstract

Erosion shapes our landscape and occurs when a sufficient shear stress is exerted by a fluid on a sedimented layer. What controls erosion at a microscopic level remains debated, especially near the threshold forcing where it stops. Here we study, experimentally, the collective dynamics of the moving particles, using a setup where the system spontaneously evolves toward the erosion onset. We find that the spatial organization of the erosion flux is heterogeneous in space and occurs along channels of local flux sigma whose distribution displays scaling near threshold and follows P(sigma)approximate to J/sigma, where J is the mean erosion flux. Channels are strongly correlated in the direction of forcing but not in the transverse direction. We show that these results quantitatively agree with a model where the dynamics is governed by the competition of disorder (which channels mobile particles) and particle interactions (which reduces channeling). These observations support that, for laminar flows, erosion is a dynamical phase transition that shares similarity with the plastic depinning transition occurring in dirty superconductors. The methodology we introduce here could be applied to probe these systems as well.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.