Multivariable calculusMultivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one. Multivariable calculus may be thought of as an elementary part of advanced calculus. For advanced calculus, see calculus on Euclidean space. The special case of calculus in three dimensional space is often called vector calculus.
Tensor calculusIn mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime). Developed by Gregorio Ricci-Curbastro and his student Tullio Levi-Civita, it was used by Albert Einstein to develop his general theory of relativity. Unlike the infinitesimal calculus, tensor calculus allows presentation of physics equations in a form that is independent of the choice of coordinates on the manifold.
Subject–object–verb word orderIn linguistic typology, a subject–object–verb (SOV) language is one in which the subject, object, and verb of a sentence always or usually appear in that order. If English were SOV, "Sam beer drank" would be an ordinary sentence, as opposed to the actual Standard English "Sam drank beer" which is subject–verb–object (SVO). The term is often loosely used for ergative languages like Adyghe and Basque that really have agents instead of subjects.
Notation for differentiationIn differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
Product ruleIn calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts. Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M.