**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# NineML: the network interchange for neuroscience modeling language

Abstract

The growing number of large-scale neuronal network models has created a need for standards and guidelines to ease model sharing and facilitate the replication of results across different simulators. To foster community efforts towards such standards, the International Neuroinformatics Coordinating Facility (INCF) has formed its Multiscale Modeling program, and has assembled a task force of simulator developers to propose a declarative computer language for descriptions of large-scale neuronal networks. The name of the proposed language is "Network Interchange for Neuroscience Modeling Language" (NineML) and its initial focus is restricted to point neuron models. The INCF Multiscale Modeling task force has identified the key concepts of network modeling to be 1) spiking neurons 2) synapses 3) populations of neurons and 4) connectivity patterns across populations of neurons. Accordingly, the definition of NineML includes a set of mathematical abstractions to represent these concepts. NineML aims to provide tool support for explicit declarative definition of spiking neuronal network models both conceptually and mathematically in a simulator independent manner. In addition, NineML is designed to be self-consistent and highly flexible, allowing addition of new models and mathematical descriptions without modification of the previous structure and organization of the language. To achieve these goals, the language is being iteratively designed using several representative models with various levels of complexity as test cases. The design of NineML is divided in two semantic layers: the Abstraction Layer, which consists of core mathematical concepts necessary to express neuronal and synaptic dynamics and network connectivity patterns, and the User Layer, which provides constructs to specify the instantiation of a network model in terms that are familiar to computational neuroscience modelers. As part of the Abstraction Layer, NineML includes a flexible block diagram notation for describing spiking dynamics. The notation represents continuous and discrete variables, their evolution according to a set of rules such as a system of ordinary differential equations, and the conditions that induce a regime change, such as the transition from subthreshold mode to spiking and refractory modes. The User Layer provides syntax for specifying the structure of the elements of a spiking neuronal network. This includes parameters for each of the individual elements (cells, synapses, inputs) and the grouping of these entities into networks. In addition, the user layer defines the syntax for supplying parameter values to abstract connectivity patterns. The NineML specification is defined as an implementation-neutral object model representing all the concepts in the User and Abstraction Layers. Libraries for creating, manipulating, querying and serializing the NineML object model to a standard XML representation will be delivered for a variety of languages. The first priority of the task force is to deliver a publicly available Python implementation to support the wide range of simulators which provide a Python user interface (NEURON, NEST, Brian, MOOSE, GENESIS-3, PCSIM, PyNN, etc.). These libraries will allow simulator developers to quickly add support for NineML, and will thus catalyze the emergence of a broad software ecosystem supporting model definition interoperability around NineML.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related concepts (6)

Related publications (3)

Related MOOCs (8)

Computational neuroscience

Computational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is a branch of neuroscience which employs mathematical models, computer simulations, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system. Computational neuroscience employs computational simulations to validate and solve mathematical models, and so can be seen as a sub-field of theoretical neuroscience; however, the two fields are often synonymous.

Neuron

Within a nervous system, a neuron, neurone, or nerve cell is an electrically excitable cell that fires electric signals called action potentials across a neural network. Neurons communicate with other cells via synapses - specialized connections that commonly use minute amounts of chemical neurotransmitters to pass the electric signal from the presynaptic neuron to the target cell through the synaptic gap. The neuron is the main component of nervous tissue in all animals except sponges and placozoa.

Biological neuron model

Biological neuron models, also known as a spiking neuron models, are mathematical descriptions of the properties of certain cells in the nervous system that generate sharp electrical potentials across their cell membrane, roughly one millisecond in duration, called action potentials or spikes (Fig. 2). Since spikes are transmitted along the axon and synapses from the sending neuron to many other neurons, spiking neurons are considered to be a major information processing unit of the nervous system.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition

This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.

Loading

Loading

Loading

In this thesis, we present a data-driven iterative pipeline to generate, simulate and validate point-neuron models of the whole mouse brain. The ultimate goal is to replicate close loop experiments wi

Bruno Ricardo Da Cunha Magalhães

Simulations of the electrical activity of networks of morphologically-detailed neuron models allow for a better understanding of the brain.
Short time to solution is critical in order to study long bi

Simulations of electrical activity of networks of morphologically detailed neuron models allow for a better understanding of the brain. State-of-the-art simulations describe the dynamics of ionic curr