Sensing the quantum limit in scanning tunnelling spectroscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis investigates novel single-molecule luminescence phenomena at their inherent, sub-molecular length scale. The microscopic understanding of luminescence processes will be crucial for the continued improvement of organic optoelectronic and semicon ...
Transport through quantum coherent conductors, such as atomic junctions, is described by conduction channels. Information about the number of channels and their transmissions can be extracted from various sources, such as multiple Andreev reflections, dyna ...
This thesis presents a combined experimental and theoretical study of the classical and quantum magnetization dynamics in single magnetic adatoms and molecules, and on the classical and quantum coherent control thereof. First, a detailed description of the ...
We study the band gap of finite NA=7 armchair graphene nanoribbons (7-AGNRs) on Au(111) through scanning tunneling microscopy/spectroscopy combined with density functional theory calculations. The band gap of 7-AGNRs with lengths of 8 nm and more is conver ...
A magnetic impurity is placed on the tip of a scanning tunnelling microscope, allowing direct tunnelling between two Yu-Shiba-Rusinov bound states. This technique can probe and enhance the impurity state lifetime. There is a limit to the miniaturization of ...
Nanoelectronic devices operating in the quantum regime require coherent manipulation and control over electrons at atomic length and time scales. We demonstrate coherent control over electrons in a tunnel junction of a scanning tunneling microscope by mean ...
The Josephson effect in scanning tunneling microscopy (STM) is an excellent tool to probe the properties of a superconductor on a local scale. We use atomic manipulation in a low temperature STM to create mesoscopic single channel contacts and study the Jo ...
Bisphenol A (BPA) aggregates on Ag(111) shows a polymorphism between two supramolecular motifs leading to formation of distinct networks depending on thermal energy. With rising temperature a dimeric pairing scheme reversibly converts into a trimeric motif ...
The efficiency and peculiarities of processes such as surface adsorption or electron-to-photon energy conversion in organic and inorganic structures are determined by the dynamics at the scale of individual molecules, atoms and charges. The timescales of s ...
We describe the formation of lanthanide-organic coordination networks and complexes under ultra-high-vacuum conditions on a clean Ag(100) surface. The structures comprise single Ho atoms as coordination centers and 1,4-benzenedicarboxylate (from terephtali ...