**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Detecting and Localizing Differences in Functional Time Series Dynamics: A Case Study in Molecular Biophysics

Abstract

Motivated by the problem of inferring the molecular dynamics of DNA in solution, and linking them with its base-pair composition, we consider the problem of comparing the dynamics of functional time series (FTS), and of localizing any inferred differences in frequency and along curvelength. The approath we take is one of Fourier analysis, where the complete second-order structure of the FTS is encoded by its spectral density operator, indexed by frequency and curvelength. The comparison is broken down to a hierarchy of stages: at a global level, we compare the spectral density operators of the two FTS, across frequencies and curve length, based on a Hilbert-Schmidt criterion; then, we localize any differences to specific frequencies; and, finally, we further localize any differences along the length of the random curves, that is, in physical space. A hierarchical multiple testing approach guarantees control of the averaged false discovery rate over the selected frequencies. In this sense, we are able to attribute any differences to distinct dynamic (frequency) and spatial (curvelength) contributions. Our approach is presented and illustrated by means of a case study in molecular biophysics: how can one use-molecular dynamics simulations of short strands of DNA to infer their temporal dynamics at the scaling limit, and probe whether these depend on the sequence encoded in these strands? Supplementary materials for this article are available online.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (9)

Related MOOCs (4)

Related publications (2)

Time series

In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).

Fourier analysis

In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.

False discovery rate

In statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null). Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null).

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

This work is about time series of functional data (functional time series), and consists of three main parts. In the first part (Chapter 2), we develop a doubly spectral decomposition for functional t

Victor Panaretos, Shahin Tavakoli

We develop the basic building blocks of a frequency domain framework for drawing statistical inferences on the second-order structure of a stationary sequence of functional data. The key element in su