Parity-time symmetric metamaterials and metasurfaces for loss-immune and broadband acoustic wave manipulation
Related publications (120)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Macroscale analogues(1-3) of microscopic spin systems offer direct insights into fundamental physical principles, thereby advancing our understanding of synchronization phenomena(4) and informing the design of novel classes of chiral metamaterials(5-7). He ...
In this article we develop an analog to the SSH model in tight-binding chains of resonators and an innovative Hermitian matrix formulation to describe the topological phases induced by multiple scattering at subwavelength scales in one-dimensional structur ...
Mechanical metamaterials are artificial composites that exhibit a wide range of advanced functionalities such as negative Poisson's ratio, shape shifting, topological protection, multistability, extreme strength-to-density ratio, and enhanced energy dissip ...
The advent of metamaterials, e.g. artificially structured materials with physical properties significantly distinct from their bulk counterparts, has ushered in new perspectives in materials science and photonics, and constitutes today a new research front ...
We investigate cloaking property of negative-index metamaterials in the time-harmonic electromagnetic setting for the so-called doubly complementary media. These are media consisting of negative-index metamaterials in a shell (plasmonic structure) and posi ...
In this thesis, the electromagnetic wave propagation is studied in nonstationary-medium scenarios. The electromagnetic fields under material time-modulation are shown to conserve their momentum but not their energy. The mathematical foundations and analysi ...
Chirality is present as a trend of research in biological and chemical communities for it has a significant effect on physiological properties and pharmacological effects. Further, manipulating specific morphological chirality recently has emerged as a pro ...
Introducing non-local effects to metamaterials increases the complexity of their dispersion relation, which allows carefully designed elastic structures to mimic the peculiar roton behaviour of correlated quantum superfluids. ...
At the nanoscale level, optical properties of materials depend greatly on their shape. Finding the right geometry for a specific property remains a fastidious and long task, even with the help of modelling tools. In this work, we overcome this challenge by ...
Far field superlensing of light has generated great attention in optical focusing and imaging applications. The capability of metamaterials to convert evanescent waves to propagative waves has led to numerous proposals in this regard. The common drawback o ...