Solving Stochastic AC Power Flow via Polynomial Chaos Expansion
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The numerical solution of partial differential equations (PDEs) depending on para- metrized or random input data is computationally intensive. Reduced order modeling techniques, such as the reduced basis methods, have been developed to alleviate this compu ...
In this thesis, we study systems of linear and/or non-linear stochastic heat equations and fractional heat equations in spatial dimension 1 driven by space-time white noise. The main topic is the study of hitting probabilities for the solutions to these ...
We present a risk-averse multi-dimensional newsvendor model for a class of products whose demands are strongly correlated and subject to fashion trends that are not fully understood at the time when orders are placed. The demand distribution is known to be ...
We introduce an online outlier detection algorithm to detect outliers in a sequentially observed data stream. For this purpose, we use a two-stage filtering and hedging approach. In the first stage, we construct a multimodal probability density function to ...
Diffuse correlation spectroscopy (DCS) is the technique of choice for non-invasive assessments of human bone blood flow. However, DCS classical algorithms are based on the fundamental assumption that the electric field of the light reaching the DCS photode ...
The optimal power flow (OPF) problem, a fundamental problem in power systems, is generally nonconvex and computationally challenging for networks with an increasing number of smart devices and real-time control requirements. In this paper, we first investi ...
We study the regularity of the probability density function of the supremum of the solution to the linear stochastic heat equation. Using a general criterion for the smoothness of densities for locally nondegenerate random variables, we establish the smoot ...
During the last decade, distribution networks have experienced essential changes driven by the integration of renewable-energy sources, batteries, electric-vehicle charging stations, etc. This results in not only opportunities, but also operational problem ...
We study the fundamental problem of learning an unknown, smooth probability function via pointwise Bernoulli tests. We provide a scalable algorithm for efficiently solving this problem with rigorous guarantees. In particular, we prove the convergence rate ...
Dynamic optimization problems affected by uncertainty are ubiquitous in many application domains. Decision makers typically model the uncertainty through random variables governed by a probability distribution. If the distribution is precisely known, then ...