EXPLOITING SEQUENCE INFORMATION FOR TEXT-DEPENDENT SPEAKER VERIFICATION
Related publications (134)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
In this work, we address the problem of query by example spoken term detection (QbE-STD) in zero-resource scenario. State of the art solutions usually rely on dynamic time warping (DTW) based template matching. In contrast, we propose here to tackle the pr ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
We present a light field synthesis technique that achieves accurate reconstruction given a low-cost, wide-baseline camera rig. Our system integrates optical flow with methods for rectification, disparity estimation, and feature extraction, which we then fe ...
Speech-based degree of sleepiness estimation is an emerging research problem. In the literature, this problem has been mainly addressed through modeling of low level of descriptors. This paper investigates an end-to-end approach, where given raw waveform a ...
This paper presents a novel deep architecture for weakly-supervised temporal action localization that not only generates segment-level action responses but also propagates segment-level responses to the neighborhood in a form of graph Laplacian regularizat ...
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...
State of the art query by example spoken term detection (QbE-STD) systems in zero-resource conditions rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
In crowding, perception of a target deteriorates in the presence of nearby flankers. In the traditional feedforward framework of vision, only elements within Bouma’s window interfere with the target and adding more elements always leads to stronger crowdin ...