EXPLOITING SEQUENCE INFORMATION FOR TEXT-DEPENDENT SPEAKER VERIFICATION
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Speech-based degree of sleepiness estimation is an emerging research problem. In the literature, this problem has been mainly addressed through modeling of low level of descriptors. This paper investigates an end-to-end approach, where given raw waveform a ...
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
We present a light field synthesis technique that achieves accurate reconstruction given a low-cost, wide-baseline camera rig. Our system integrates optical flow with methods for rectification, disparity estimation, and feature extraction, which we then fe ...
In crowding, perception of a target deteriorates in the presence of nearby flankers. In the traditional feedforward framework of vision, only elements within Bouma’s window interfere with the target and adding more elements always leads to stronger crowdin ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. Whi ...
Learning to embed data into a space where similar points are together and dissimilar points are far apart is a challenging machine learning problem. In this dissertation we study two learning scenarios that arise in the context of learning embeddings and o ...
State of the art query by example spoken term detection (QbE-STD) systems in zero-resource conditions rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors ...
This paper presents a novel deep architecture for weakly-supervised temporal action localization that not only generates segment-level action responses but also propagates segment-level responses to the neighborhood in a form of graph Laplacian regularizat ...
In this work, we address the problem of query by example spoken term detection (QbE-STD) in zero-resource scenario. State of the art solutions usually rely on dynamic time warping (DTW) based template matching. In contrast, we propose here to tackle the pr ...