White matter integrity of premotor-motor connections is associated with motor output in chronic stroke patients
Related publications (47)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Background and Purpose-Brain imaging has continuously enhanced our understanding how different brain networks contribute to motor recovery after stroke. However, the present models are still incomplete and do not fit for every patient. The interaction betw ...
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. T ...
Non-invasive brain stimulation (NIBS) combined with behavioral training is a promising strategy to augment recovery after stroke. Current research efforts have been mainly focusing on primary motor cortex (M1) stimulation. However, the translation from pro ...
Throughout species, including mice and humans, we all have to make decisions to fulfill our fundamentals needs: eat, drink, explore, communicate, reproduce... To make those decisions, we have to collect informations from the surrounding world and to proces ...
Every year in Europe 1.5 million patients suffer a new stroke. Despite the further developments in acute therapy with nationwide stroke units, thrombolysis, thrombectomy and post-acute neurorehabilitation, only a small proportion of patients recover to a s ...
Background Brain imaging has shown that not only the cortico-spinal tract (CST), but also alternate corticofugal motor fibers (aMF), such as the cortico-rubro-spinal and cortico-reticulo-spinal tract, influence residual motor output after stroke. So far, s ...
Dynamic causal modelling (DCM) has extended the understanding of brain network dynamics in a variety of functional systems. In the motor system, DCM studies based on functional magnetic resonance imaging (fMRI) or on magneto-/electroencephalography (M/EEG) ...
Background: Brain imaging has shown that not only the cortico-spinal tract (CST), but also alternate corticofugal motor fibers (aMF), such as the cortico-rubro-spinal and cortico-reticulo-spinal tract, influence residual motor output after stroke. So far, ...
Introduction Unilateral movements are primarily processed in contralateral cortical and subcortical areas and additionally in ipsilateral cerebellum, leading to an asymmetric pattern of neural activation. Decrease of lateralization is characteristic of agi ...
Our motor outputs are constantly re-calibrated to adapt to systematic perturbations. This motor adaptation is thought to depend on the ability to form a memory of a systematic perturbation, often called an internal model. However, the mechanisms underlying ...