Publication

Direct unwrapped phase estimation in phase shifting interferometry using Levenberg-Marquardt algorithm

Abstract

An algorithm for the direct unwrapped phase estimation from the linearly phase shifted interferograms is presented. The temporal fringe intensity along each pixel is represented as a function of fringe amplitude, phase step and the searched phase. These parameters are estimated in the nonlinear least squares sense using the Levenberg-Marquardt algorithm. The proposed method allows the masked interferograms to be handled using a pixel selection approach to provide the appropriate initial conditions at a given pixel utilizing the estimated parameters at one of its neighboring pixels, which results in direct unwrapped phase estimation. Simulation results are provided to evaluate the performance of the proposed method as a function of noise power, spatially varying phase step, number of interferograms and phase step detuning error. The experimental results are also provided in the case of a holographic interferometry setup.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.