Neutron spectroscopy in the layered quantum magnet SrCu₂(BO₃)₂ and in transition metal phosphorus trisulfides (MPS₃)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The subject of the present work is discovery and in-depth characterization of a new class of functional materials. Tuning of the bond polarity and orbital occupation with a goal of establishing balance between localization and delocalization of electrons - ...
Spin excitations in the antiferromagnetic Néel phase of the Shastry-Sutherland crystal SrCu2(BO3)2 have been investigated using inelastic neutron scattering. No clear excitations could be identified, possibly due to challenging experimental conditions ulti ...
The spin waves in single crystals of the layered van der Waals antiferromagnet CoPS3 have been measured using inelastic neutron scattering. The data show four distinct spin wave branches with large (>14 meV) energy gaps at the Brillouin zone center indicat ...
Transition metal oxides represent a class of materials displaying very unusual electronic, structural and magnetic properties. They are extremely interesting, both from a technological and fundamental point of view. The most important characteristic of the ...
Bound-states of particles are an interesting problem in quantum mechanics dating back to 1931 Bethe's solution of spin-1/2 Heisenberg chain. These exotic composite states are realized in quantum magnets and are detectable in inelastic neutron scattering (I ...
Low magnetic damping and high group velocity of spin waves (SWs) or magnons are two crucial parameters for functional magnonic devices. Magnonics research on signal processing and wave-based computation at GHz frequencies focused on the artificial ferrimag ...
Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kita ...
Collective spin excitations propagating in magnetically ordered materials are called spin waves (SWs) or magnons. They are promising for low-power and beyond-CMOS information processing, which do not suffer from the ohmic losses. SWs in ferromagnets (antif ...
Raw data associated to the manuscript ‘’Spin wave dispersion of ultra-low damping hematite (α-Fe2O3) at GHz frequencies‘’, Physical Review Materials 7, 054407(2023); doi: 10.1103/PhysRevMaterials.7.054407 Information about file fo ...
Spin waves (SWs) are collective excitations of the spin ensemble in systems with magnetic order. In quantum mechanics, a SW is known as a magnon, which is the quasiparticle describing the quantized nature of these wave-like excitations. Magnonics is the re ...