**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Magnon-phonon interactions enhance the gap at the Dirac point in the spin-wave spectra of CrI3 two-dimensional magnets

Abstract

Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kitaev (DM/K) interactions and suggested to set the stage for topologically protected edge states to sustain non-dissipative spin transport. We perform state-of-the-art simulations of the spin-wave spectra in monolayer CrI3, based on time-dependent density-functional perturbation theory (TDDFpT) and fully accounting for spin-orbit couplings (SOC) from which DM/K interactions ultimately stem. While our results are in qualitative agreement with experiments, the computed TDDFpT magnon gap at the Dirac point is found to be 0.47 meV, roughly six times smaller than the most recent experimental estimates, so questioning that intralayer anisotropies alone can explain the observed gap. Lattice-dynamical calculations, performed within density-functional perturbation theory (DFpT), indicate that a substantial degeneracy and a strong coupling between vibrational and magnetic excitations exist in this system, providing a possible additional gap-opening mechanism in the spin-wave spectra. To pursue this path, we introduce an interacting magnon-phonon Hamiltonian featuring a linear coupling between lattice and spin fluctuations, enabled by the magnetic anisotropy induced by SOC. Upon determination of the relevant interaction constants by DFpT and supercell calculations, this model allows us to propose magnon-phonon interactions as an important microscopic mechanism responsible for the enhancement of the gap in the range of & eta;4 meV around the Dirac point of the CrI3 monolayer.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (25)

Related publications (88)

Basic Steps in Magnetic Resonance

A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology

Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)

Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).

Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)

Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).

Related concepts (35)

Topological order

In physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.

Density functional theory

Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density.

Coupling constant

In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic.

Stefano Rusponi, Chao Li, Boris Sorokin

The magnetic propertiesof transition-metal ions aregenerallydescribed by the atomic spins of the ions and their exchange coupling.The orbital moment, usually largely quenched due the ligand field,is then seen as a perturbation. In such a scheme, S = 1/2 io ...

Pasquale Scarlino, Jann Hinnerk Ungerer

Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate ...

The nature of the gap observed at the zone border in the spin excitation spectrum of CrI3 quasitwo-dimensional single crystals is still controversial. We perform first-principles calculations based on time-dependent density functional perturbation theory, ...