Publication

Interaction of atmospheric boundary layer flow with wind turbines

Majid Bastankhah
2017
EPFL thesis
Abstract

As wind turbines operate within the atmospheric boundary layer (ABL), the study of their interaction with the ABL flow can help us better understand and predict their performance. In addition to the performance of wind turbines, this interaction has an effect on the flow both upwind and downwind (i.e., wake region) of the turbines. In particular, the study of turbine wakes is of great importance because they are the main cause of power losses and fatigue loads in wind farms. In the current thesis, four studies are conducted to fully examine the turbine interaction with the ABL flow, with an emphasis on turbine wakes. In the first study, a new analytical wake model is proposed and validated to predict the wind velocity distribution in the far-wake region, where downwind turbines usually operate. The proposed model is derived by applying the conservation of mass and momentum and assuming a Gaussian distribution for the velocity deficit in the wake. This simple model only requires one parameter to predict the velocity distribution in the far wake of a wind turbine. In general, it is found that the velocity deficit in the wake predicted by the proposed analytical model is in good agreement with the experimental and numerical data. Furthermore, the results show that the new model predicts the power extracted by downwind wind turbines more accurately than other common analytical models, some of which are based on less accurate assumptions like considering a top-hat shape for the velocity deficit. In the second study, wind tunnel measurements are carried out to systematically investigate turbine wakes under yawed conditions. The detailed experimental data are used to perform a budget study of the continuity and Reynolds-averaged Navier-Stokes equations. This theoretical analysis reveals some notable features of the wakes of yawed turbines, such as the asymmetric distribution of the wake skew angle with respect to the wake center. Under highly yawed conditions, the formation of a counter-rotating vortex pair in the wake cross-section as well as the vertical displacement of the wake center are also shown and analyzed. Finally, this study enables us to develop general governing equations upon which a simple and computationally inexpensive analytical model is built. The proposed model aims at predicting the wake deflection and the far-wake velocity distribution for yawed turbines. The findings of this study can be especially useful to assess the possibility of optimizing wind-farm power production by controlling the yaw angle of the turbines. In the third study, comprehensive wind tunnel experiments are performed to study the interaction of a turbulent boundary layer with a wind turbine operating under different tip-speed ratios and yaw angles. Force and power measurements are performed to characterize the wind turbine performance. Moreover, a high-resolution stereoscopic particle-image velocimetry (S-PIV) system and hot-wire anemometry are used to study the flow in the upwind, near-wake and far-wake regions. This study provides new insights on the turbine and flow characteristics such as the evolution of tip vortices and wake meandering. Finally, the last study concerns the design and the performance analysis of a new three-bladed horizontal-axis miniature wind turbine with a rotor diameter of 1515 cm. Due to its small size, this turbine is particularly suitable for studies of wind farm flows and the interaction of the turbine with an incoming boundary-layer flow. Special emphasis is placed on accurate measurements of the mechanical power extracted by the miniature turbine from the incoming wind. In order to do so, a new setup is developed to measure the torque of the rotor shaft. The thrust and power coefficients of the miniature turbine are found to be around 0.80.8 and 0.40.4 in optimal conditions, respectively, which are close to the ones of large-scale turbines in the field.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy. , hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels.
Wind turbine design
Wind turbine design is the process of defining the form and configuration of a wind turbine to extract energy from the wind. An installation consists of the systems needed to capture the wind's energy, point the turbine into the wind, convert mechanical rotation into electrical power, and other systems to start, stop, and control the turbine. In 1919, German physicist Albert Betz showed that for a hypothetical ideal wind-energy extraction machine, the fundamental laws of conservation of mass and energy allowed no more than 16/27 (59.
Floating wind turbine
A floating wind turbine is an offshore wind turbine mounted on a floating structure that allows the turbine to generate electricity in water depths where fixed-foundation turbines are not feasible. Floating wind farms have the potential to significantly increase the sea area available for offshore wind farms, especially in countries with limited shallow waters, such as Japan, France and US West coast. Locating wind farms further offshore can also reduce visual pollution, provide better accommodation for fishing and shipping lanes, and reach stronger and more consistent winds.
Show more
Related publications (133)

Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments

Fernando Porté Agel, Guillem Armengol Barcos

Static axial induction control and tilt control are two strategies that have the potential to increase power production in wind farms, mitigating wake effects and increasing the available power for downstream turbines. In this study, wind tunnel experiment ...
Basel2024

Towards an improved understanding of wind turbine wakes in complex terrain

Arslan Salim Dar

In this thesis, we explored the effect of certain terrain-induced flow phenomena on the development of wind turbines sited in complex terrain. A combined experimental and analytical approach is used to study wind turbine wakes in different types of complex ...
EPFL2024

The effect of nacelle-to-rotor size on the wake of a miniature wind turbine

Fernando Porté Agel, Arslan Salim Dar, Rim Majzoub

Wind tunnel experiments are performed to investigate the effect of nacelle-to-rotor size on the wake of a wind turbine under different Reynolds numbers. Four different turbine configurations are tested, which vary in the rotor diameter and nacelle length a ...
IOP Science2024
Show more
Related MOOCs (8)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.