Binary formBinary form is a musical form in 2 related sections, both of which are usually repeated. Binary is also a structure used to choreograph dance. In music this is usually performed as A-A-B-B. Binary form was popular during the Baroque period, often used to structure movements of keyboard sonatas. It was also used for short, one-movement works. Around the middle of the 18th century, the form largely fell from use as the principal design of entire movements as sonata form and organic development gained prominence.
MapA map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes. Many maps are static, fixed to paper or some other durable medium, while others are dynamic or interactive. Although most commonly used to depict geography, maps may represent any space, real or fictional, without regard to context or scale, such as in brain mapping, DNA mapping, or computer network topology mapping.
Musical formIn music, form refers to the structure of a musical composition or performance. In his book, Worlds of Music, Jeff Todd Titon suggests that a number of organizational elements may determine the formal structure of a piece of music, such as "the arrangement of musical units of rhythm, melody, and/or harmony that show repetition or variation, the arrangement of the instruments (as in the order of solos in a jazz or bluegrass performance), or the way a symphonic piece is orchestrated", among other factors.
Convergent seriesIn mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted The nth partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if the sequence of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets partial sums that become closer and closer to a given number.
Abelian varietyIn mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.
Convergence testsIn mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series . If the limit of the summand is undefined or nonzero, that is , then the series must diverge. In this sense, the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of the summand is zero. This is also known as the nth-term test, test for divergence, or the divergence test.
Ratio testIn mathematics, the ratio test is a test (or "criterion") for the convergence of a series where each term is a real or complex number and an is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test. The usual form of the test makes use of the limit The ratio test states that: if L < 1 then the series converges absolutely; if L > 1 then the series diverges; if L = 1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
Algebraic varietyAlgebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition. Conventions regarding the definition of an algebraic variety differ slightly.
ArchitectureArchitecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing buildings or other structures. The term comes ; ; . Architectural works, in the material form of buildings, are often perceived as cultural symbols and as works of art. Historical civilizations are often identified with their surviving architectural achievements.
Rational varietyIn mathematics, a rational variety is an algebraic variety, over a given field K, which is birationally equivalent to a projective space of some dimension over K. This means that its function field is isomorphic to the field of all rational functions for some set of indeterminates, where d is the dimension of the variety. Let V be an affine algebraic variety of dimension d defined by a prime ideal I = ⟨f1, ..., fk⟩ in . If V is rational, then there are n + 1 polynomials g0, ..., gn in such that In order words, we have a of the variety.