Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Scientific workflows are often composed of compute-intensive simulations and data-intensive analysis and visualization, both equally important for productivity. High-performance computers run the compute-intensive phases efficiently, but data-intensive processing is still getting less attention. Dense non-volatile memory integrated into supercomputers can help address this problem. In addition to density, it offers significantly finer-grained I/O than disk-based I/O systems. We present a way to exploit the fundamental capabilities of Storage-Class Memories (SCM), such as Flash, by using scalable key-value (KV) I/O methods instead of traditional file I/O calls commonly used in HPC systems. Our objective is to enable higher performance for on-line and near-line storage for analysis and visualization of very high resolution, but correspondingly transient, simulation results. In this paper, we describe 1) the adaptation of a scalable key-value store to a BlueGene/Q system with integrated Flash memory, 2) a novel key-value aggregation module which implements coalesced, function-shipped calls between the clients and the servers, and 3) the refactoring of a scientific workflow to use application-relevant keys for fine-grained data subsets. The resulting implementation is analogous to function-shipping of POSIX I/O calls but shows an order of magnitude increase in read and a factor 2.5x increase in write IOPS performance (11 million read IOPS; 2.5 million write IOPS from 4096 compute nodes) when compared to a classical file system on the same system. It represents an innovative approach for the integration of SCM within an HPC system at scale.
Aleksandra Radenovic, Andras Kis, Mukesh Kumar Tripathi, Zhenyu Wang, Asmund Kjellegaard Ottesen, Yanfei Zhao, Guilherme Migliato Marega, Hyungoo Ji