Yttrium iron garnet (YIG) has been widely used in spin wave studies thanks to its low Gilbert damping constant. However, most high-quality YIG films are grown on gadolinium gallium garnet (GGG) substrate, which makes it difficult to integrate with existing semiconductor technology. We show spin wave excitation in a nanometer-thick YIG micro-channel on silicon substrate. The YIG is grown by pulsed laser deposition (PLD) in high-purity oxygen followed by rapid thermal annealing at 800 degrees C after deposition. Using meander coplanar waveguides at submicrometer scale, spin waves with wavelength down to 1 mu m are excited. By measuring the linewidth of the spin wave reflection spectra, a Gilbert damping constant alpha = 1.9 x 10(-3) was obtained.
Jean-Philippe Ansermet, Haiming Yu, Jilei Chen, Yao Zhang, Song Liu, Rundong Yuan, Cheng Song
Dirk Grundler, Benedetta Flebus